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Entropic trapping and electrophoretic drift of a polyelectrolyte down a channel with a
periodically oscillating width

Grant I. Nixon and Gary W. Slater
Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
(Received 10 July 1995

We consider the electrophoretic drift of a polyelectrolggech as DNA in a narrow channel or capillary
with a spatially varying bore sizghis can be thought of as a simplified gel mgd&hese bore-size variations
reduce the migration pathway to a series of pores and strictures creating an entropic potential surface through
which the polyelectrolyte must migrate. The frequency of barrier crosgingbability of jumping to an
adjacent porgis described as an activated process that is dependent on the change in confinement entropy and
on the electrostatic potential energy. At low field intensities, the strictures induce an entropic-trapping regime
where the time between traps is a strong function of the molecular size; our simulations corroborate our
analytic results. Moreover, we examine two critical field intensities: the first,is the field intensity beyond
which the entropic barriers are overcome in an inhomogeneous system, while thesgther that for which
the longitudinal diffusion coefficient is a maximum.

PACS numbg(s): 82.45+z, 83.10.Nn, 87.15:v, 66.10.Cb

I. INTRODUCTION model system in Sec. Il A and our Brownian dynamics algo-
rithm throughout Secs. Il B—II E. We then follow with a sim-
The dynamical properties of macromolecules in porougplified analytical investigation of our entropic-trapping
media are immediately relevant to many situations of practimodel in Sec. Ill. Simulation results follow in Sec. 1V, and
cal importance including filtration, oil recovery, size exclu- We conclude in Sec. V by examining the experimental sig-
sion chromatography, transport of solute through mempMificance of our results.
branes, and the Human Genome Project where

electrophoretic processes are used to separate DNA frag- Il SIMULATION METHODOLOGY
ments of various sizedl ].
The nature of the interactions between DNA and the sepa- A. The system under study

ration media during electrophoresis is yet poorly understood. Qur two-dimensiona(2D) system is comprised of an in-
This has limited our understanding as to which transportinite channel with semicircular protrusions extending in-
mechanisms are best suited for effective separation ofvardly from the opposing wall§see Figs. 1 and)2 We
nucleic acids. Although sieving is believed to be the mainassume the protrusions to be easily permeated by the solvent
mechanism in the case of smaller macromolecyis in ions but completely impermeable to the polyelectrolytes;
many cases, however, a number of transport mechanisms
(e.g., Rouse dynamids$], reptation[4,5], geometratiorj 6],
and self-similar herniag7]) may be involved. Recently,
many author§8-13 have investigated the phenomenon of
entropic trapping. Entropic barrier transport applies to cases
in which the equilibrium dimensions of the macromolecules
are comparable to the mean pore size of the medium. Typi-
cally, entropic trapping is manifested in the form of a diffu-
sion coefficien{8—11], or an electrophoretic mobilityl1— P
13], which is more strongly molecular size dependent than
either the Rouse or reptation predictions. We will investigate
the manifestation of entropic traps in our model system of
strictures and pores and, of relevance to electrophoresis, we
will also introduce two critical field intensities, and
&ep €, is the field intensity for which the electric forces can
overcome the entropic barriers ang is the field intensity
for yvhich the longitudinal diffusion coefficient reaches a, <hannel with maximum diametet; =2.8, minimum diameter
maximum. . . _ do=0.8, protrusion radiugp=1, and interpore spacing\y|=3.
This paper is organized as follows. First, we describe oufrhe gray-shaded region is a circle whose radius is equal to the
chain’s radius of gyrationrg~0.76) and is centered about the
chain’s center of masg.,. As the chain is essentially unperturbed
* Author to whom correspondence should be addressed. Electronigithin the porelike regionsi.e. 2r ;o<<dy), the chain must first be
address: gary@physics.uottawa.ca compressed before passage through a stricture becomes possible.

FIG. 1. Computer simulation snapshot dfle= 20 bead chain in
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dR
J gy = (1= 8am)Fs(n+1,0)+(1= 8, )Fy(n—1.n)
i + 3 Feonsit GEHTr(1), ®
“2) & constr
& where( is the friction coefficient of a single beaR,, is the
bead positionf¢(m,n) is the entropic spring force on bead

;

,41
<fna(t)>:0,

n due to beadn, & ; is a Kronecker delta functiof;, cons;iS
the force on bead due to an external constraife.g., the
% tube wal), gE is the force due to the electric fiel acting

FIG. 2. From upper left to bottom right: computer simulation (Fra(D)fma(t’)) =20k T SymSapd(t—t'), 2)
snapshots of ¢ =20 bead chain migrating in a rough tubsith

on the chargey of the bead, and, is the stochastic force

acting on beadh. The stochasti¢Langevin forcef, is char-
acterized by the moments

maximum diameted;=2.8, minimum diameted,=0.8, protru-  with {a,8}={x,y} being a coordinate designatior &ndy

sion radiusp=1, and interpore spacing\y|=3) under the effect are orthogonal One must discretize these equations and ren-

of a weak fields =0.005 directed upward. Figure 1 is represented inder them into dimensionless form. From E&), we can

the fourth frame. The unperturbed radius of gyration for theestablish the relation

M =20 bead chain is4,~0.73; thus the chain is essentially unper-

turbed within the porelike regioné.e., 2rg<<ds) while, in the 2 2LkgT

stricture regions, we have compression sinego2d,. The (di- (fra()= I (€)

mensionlesstime between frames A 7=310.

whereAt is the correlation time of the stochastic forge.,
thus the electric field intensity is to be assumed constarUr integration time stgpThe stochastic forcé,, is chosen
throughout. The strictures have both a well-defined periodicSUch @s to obey the Gaussian distribution
ity and size, which facilitates the theoretical analysis. The

2
more general case of a random distribution of strictures is P(f,)df, = 1 exp( _ fnza )df A
currently under study. Note, however, that our strictures are nesT e \/27'r<fzna> (. n

not made up of narrow, flat channels, as was the case in
previous studie§10]; we will see later that these channels, Let us implicitly define the dimensionless stochastic vector
besides being somewhat more realistic, lead to qualitatively?n:(ﬂnx,ﬂny » VIZ.,

different physics in the presence of an electric field. We now 20k T) 12
adopt the following notation to describe our system. The foq(t =( B ) Tnal(t), (5)
(maximum tube diameter isly, while the radius and peri- At

odicity of the semicircular protrusions ageand |Ay|, re-
spectively, with 2<{|Ay|,d{}. Therefore, the minimum
channel width isgdy=d+—2p. For the purpose of this study,
we will be interested in the dynamics of polymers with an (7na(1))=0, <77ﬁa(t)>:1' (6)
unperturbed radius of gyrationrg, in  the range

do<2rg<{|Ay|,dr, 2p} such that the conformations of the If we now define the natural units

polyelectrolytes are relatively unperturbed inside the open

where 7, is Gaussian distributed with zero mean and unit
variance

(porous regions whereas they are squeeZbdt entirely ¢ _ 2kgT _ {L? L—Na @
contained inside the narrow channels. LT Yok T
B. Brownian dynamics for force, time, and lengthl(=Na being the maximum pos-

o . sible spring extensignrespectively, the equation of motion
We employ a modified 2D version of the Rouse model.an pe rewritten in the scaled and discretized two-

that describes a free-draining polymer chain as a S“CCGSSiQﬁmensional form
of M “beads” at positionsR,,R,, ... Ry separated by

M —1 “entropic springs”; each spring represents a sequence

of N Kuhn statistical segments of lenggh As is customary, Ary(7)=A7
we neglect excluded volume and hydrodynamic effects and

we work in thestrong-damping limiof Brownian dynamics

(inertial terms are ignorgdWe may thus write our equation + 2 feonstrt €
of motion for beadn (n=1,2,...,M) in the generalized constr
(position Langevin form (8

(1= 8um)fs(n+ 1,0+ (1= 5y Df(n—1,n)

+ VAT [ ax( D) 8F Tny(7)8],
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wheree, ande, are unit vectors along their respective coor-which proves remarkably accuratéhe error is less than

dinate axesx andy. In Eqg. (8), we have also implicity 6.5% over the whole range of spring extensions der2)

defined several scaled variables, namely, while maintaining the correct asymptotic behaviour thath
Ar—0 andAr—1.

Rn(t)_>r( ) F_S_>f I:ob'st_>f E—n‘:
L nl7), £, _fL obsts f, ) D. Tube pathway
The tube pathway is divided into two componefisn-
t At straintg: a flat tube and a series of periodic semicircular
T T——>AT- (9 protrusions extending inwardly from the tube walls. Both are
L L

represented by hard cores with a Lennard-Jones-like soft-
_ _ core repulsive force extending a distangefrom the hard
In the simulation, we compute the forces on all beads andore |fAr is the distance between the obstacle surface and

follow with simultaneous displacementsr, for all beads  he pointlike polymer bead, the force is directed perpendicu-
(n=1 to M). Integration problems can occur when spring |y to the tube pathway surface, viz.
extensions tend to values greater than the maximum spring ’ '

lengthL =Na or when beads attempt to enter the walls. This feonstf Ar)—oo(Ar<0), (14
requires careful adjustment of the time stAp (see Sec.
Il E). In the rest of this paper, all variables are scaldd 1 112
mensionlessvariables unless specified otherwise. feonstt AT)=A(AT+0)| 725 7~ 32

C. Entropic springs (0<Ar<o), (15

The effective contractile force-Fg4, also known as the
entropic spring force, arises from the loss of entropy in the
system ofN Kuhn statistical segments of lengghthat com-
prise a springor subchain when the latter is given an ex-
tensionAr. For ad-dimensional subchain where the ends are

feonstk AT)=0 (Ar=o0). (16)

Thus there is no discontinuity &r=o.

separated by amean distancér, and in the so-called stress E. Adaptive stepsize control
ensemble, we haviel4] 1. Time cutting
(o) Our stochastic differential equation integrator exerts adap-
Ar= T (T dr1(fa)’ (10 tive control over its own progress, making frequent changes

in its step size when system integrity violations occur. Such
violations result in the time incrementr being divided by
some convenient valuét in our implementationand the
step being reattempted. Thus the time increment is not a
static quantity, but is reduced in accordance with the stresses
built up in the chain. A small time incrementr allows the
system to tiptoe through rough terrain, while large time in-
crements permit great strides through smooth potential sur-
f =N—dAr 14 d (Ar)2 faces. Thus the time increment is continuously optimized,
s 2 (2+d) which results in significant gains in terms of efficiency. Such
’ an optimization scheme also permits the incorporation of a
d“(8+d) : ; ; ; ; ;
+ (Ar)4+. .-, (11) maximum spatial step size to better suit the dimensions of
(2+d)2(4+d) the system under study. This has proven to be most useful for
a recent study of electrophoretic collisiofisg].
from which one yields the general form of the harmonic However, all things being equal, it is clear that will
spring constant tend to be smaller when large stochastic forces are chosen
since large forces tend to compromise system integrity more
Nd f, KeT of_ten than do small for.ces. Therefore, Ia}rge stochastic forces
kh:?f:dﬁ’ (12 will, on average, receive smaller time incremefits., are
given less weightthan will smaller stochastic forces. We
refer to this time bias a%tochastic cooling” since this bi-
where we have reintroduced the appropriate dimensionaising is tantamount to lowering the temperature of the sys-
units. While the use of harmonic springs may lead to untem.
physical stretching15], the use Eq(11) is limited due to
slow convergence. Consequently, we approximate the expan- 2. Damping the evolution of the time increment
sion using the “modified Padapproximant”[14]

where |, is the modified Bessel function of order and

fa=Fsal(kgT)=2f/N. For d=3, Eqg. (10) reduces to the
well-known Langevin function_(f,) =coth(f,)—1/f,. In-

verting the Taylor series expansion of HJ.0) yields the
force-extension relation

Fortunately, there is a simple way of sidestepping stochas-
) tic cooling problems. If we relax the requirement that every
:Z_fs% Ar[d—(Ar)7] (13) stochastic term receives the samepriori amount of inte-
2 N 1-(Ar)Z grated time and simply demand that each recea@sroxi-
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d Cm0=0.1[from Eqg.(21)]. As we can see, there is a marked

discrepancy between the expected value and the simulation
e o ® o ® points asm decreases below about* =1000. Hence, by
1 * sufficiently damping the evolution of the time step, we effec-
* tively eliminate stochastic cooling. As for the effectrafon
CPU process time, the results appear in the inset of Fig. 3. As
0.95 can be seen, the CPU process time is a monotonic, slowly
increasing function ofn. Thus one can improve simulation
accuracy(i.e., by increasingn) significantly with little pen-
. alty with regards to the CPU process time.
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Ill. ANALYTICAL STUDY
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. A. The free chain

log, [ tepy (sec) ]
S

We first review the properties of a free Rouse chain using

0.8} . our scaled units. Consider a freely jointed chain consisting of

R M beads coupled througkl — 1 springs, with((Ar)?), be-

1 2 3 4 5 6 ing the mean square spring length. We will use the subscript
. zero for the unperturbed values of the quantities. The radius

logyy [ m (damping parameter) ] of gyration of the polymer 4 is given by[see, e.g., Ref.

[18], Eq. (1.5.15)]

h
[

d,,, (diffusion coefficient) / d,, (expectation value)

FIG. 3. Effects of the damping parameter on the diffusion M2—1
constantd. ,, for a chain withM =5 beads reveal that the critical r2 = ((Ar)2> ) (18)
threshold value of the damping parameter is approximately % 6M 0
m* =1000. The effect ofn on the process CPU time, as carried out
on a SUN model 10 UNIX computer workstatideee inset re-  The self-diffusion coefficient of the center of mass vector
veals that the CPU time is a monotonic, slowly increasing functionrc_m_(t) is defined by the relation
of the damping parametem. The settings were no walls,

A7a=0.1 for the maximum time increment, ang,= 0.5 for the 1 ([Fem(P)—Tem(0)]2)
total simulation time. dem=Ilim 2d — — ,

t—oo

(19

T

mately the same amount, then stochastic cooling can be

averted. There exist a number of ways in which this may bavhered is the dimensionality of the space and the position of
accomplished; we opted to damp the evolution of the timghe center of mass is given by

increment. Let us consider a case where a given time step

A7y leads to the system correctly performing a time step. 1 M
The next time incremeni 7, is then chosen to be rc.m.zmnzl Mn- (20
_ (m—=1)/m 1/m
Am=Arg (ATma) ™, 17 In the Rouse model, the unperturbed value of the diffusion

: ) _ . coefficient is given by
whereA 7,5, IS a user-defined maximum time increment and

the damping parameten can be chosen large enough to 1
ensure that successiver;’s increase slowly following each
time step. Therefore, for simulations with large, a histo-
gram plot of the net integrated time per bin with respect to . L
the (binned Langevin forces will, effectively, be equivalent Whereas th_e Rousiermina) relaxation time of the end-to-
to the probability distribution function of Langevin forces €Nd Vector is

(i.e., the bias will be removedMoreover, this damping per-

TV (21)

2
mits residual stresses in the system to relax smoothly while S 1 M 22)
the time increment is being optimized. Ro" N\ o/ -
3. Effects of the damping parameter As for the mean(free-drift) electrophoretic velocity of the

A series of simulation§17] were carried out to determine center of mass, it is given by

the relationship between the choicemfand simulation ac-
curacy as well as CPU time. Several different damping fac-
tors were chosen for the case of an unperturifesb) five-
bead chain with a maximum time incremehtr,,,,=0.01. wheree is the scaled field intensity. Thus thH&ee-drift)
We first examined the effect af on the accuracy. The re- electrophoretic mobilityu=v ., /e is given by

sults are plotted in Fig. 3. For el =5 bead chain, the self-

diffusion coefficient of the center of mass is expected to be Mmo=1. (24

Uemy™ € (23
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It is indeed because the free-solution electrophoretic mobilityf entropically activated diffusion in the absence of electric
is independent of molecular size that electrophoretic separdields. We suggest using semicircular protrusions as a “more
tion must be carried out ite.g., gel-like “sieving” struc- realistic’ model of the narrow channels in, for example,
tures. polymer gels. Since the polymer molecule will reach a mini-
mum entropy when its center of mass is located in the middle
B. Free electrophoretic drift of a chain of the stricture, we can generalize the before-mentioned scal-

. ...__ing law usin
Let us now consider the case of a polyelectrolyte drifting g g

freely in a tube without strictures under the influence of an roo\2
. . . . . AS rgO 90
electric fielde. The unconditional mean first passage time k—g dyP(y) , (30
B 0

for covering any distancg\y| is simply given by[19] d(y)
tanH 8] whered(y)=dy+2p—2(p?—y?)¥?is the channel width at
7(8)=—%5— "o, (259  a distancey from the pore centefwith d(0)=d, and
d(y=p)=d;] and P(y) is the local monomer density. We
where the bias factof is given by |mp||C|ty assume thadT>do and rgo<p. The full solution
of this confinement problem requires a self-consistent calcu-
Uem,To lation of P(y) for the given geometry. However, we can get
o= Ay Me|Ayl. (26)  the correct form of the first two terms by simply assuming

that P(y) remains a smooth distribution of WidnhJO cen-

Herev.no=¢ is the velocity given in Eq(23) while 7, is  tered aty=0; we obtain
the Brownian time for diffusing over a mean square distance

2 2
Ay|?, AS [T r
14y _;(ﬂ) 1-b—2 ..., 3D)
|Ay|2 Kg do pdo
= =M|Ay|2. 2
7o ch.mo |4yl @7 whereb is a numerical factor of order unity. The omitted

terms also depend on the ratily/2p, which measures the
The corresponding mean first passage times for migrating “latness” of the strictures. We note that the first tetpref-
distance|Ay| in the direction of the field €) or in the acto) is the expected result for a flat channel, as discussed
direction opposite to the field{) are given by the expres- previously. The second terffirst correction termis propor-

sion tional tor 4 /(pdo) Y2 the expansion parameter of the series;
B this is the relative span of the polymer molecule when it is

+(1-e7?%) centered about the point of minimum widtl in the chan-
To+(8)= 5 o @8 el Obviously, we would recover the results of Muthukumar

and Baumggner in the limit of flat channelgi.e., when
Note that in the zero-field limit—0, we havery.—279  p—) as the second term would then vanish. Whignis
whereas, in the infinite-field limif— oo, we yield the limit-  small, those monomers not situated in the stricture’s narrow-
ing values 79, —79/0=|Ay|lve.mo=|Ay|/le  and est section are less confined and the average channel width
To_~€??—o, as expected. Thus, in our analysis of our 2Dexperienced is somewhat larger thagi hence the loss of
channel with periodic protrusions, lower bounds for both theconformational entropy is reduced. Interestingly enough, the
mean first passage time and the trapping time will be proeritical radius of gyration above which this effect is signifi-

vided by Egs.(28) and(25), respectively. cant is given by the geometric meapdg)'? of the two
characteristic lengths describing the strictures. Since the un-
C. Trapping of a polymer chain in the absence of fields perturbed radius of gyration scales BgSONMlIZ, we may

The rate of successfully attempted jumps from pote ~ cOmMbine Eqs(29) and(31) to yield

porei+1 is expected to depend on the ratio of tdénen- oy oM
siona) activation energyAG=TAS, due to the change in rmw(M)eXF{_ _2<1_ _” (32
confinement entropA S imposed on the chain by the stric- do pdo

ture, to the thermal enerdggT, viz., : .
Kb where ¢ and @ are topological constants that take into ac-

I'=w(M)e 25k, (29  count, among other things, the average length of the springs
of the model polymer. The frequenay(M) is given by
wherew(M) is the size-dependent rate of attempted transi-l/7o, where the mean diffusion time, is given by Eq.(27).
tions. The entropy of a polymer molecule being an extensivd hus we have
variable, we have\S~M. For an ideal random-walk chain

and a narrow channel with parallel surfaces, the entropy of dc.m.oz Tirap_ iwex M 1— ﬂ (33)
confinement scales lik& S~ (r 4o/do)2, wherer 4 is the un- e, 70 L7 dZ |7 pdg

perturbed radius of gyration ard}, is the diameter of the

channel[20]. Muthukumar and Baumggner [10] investi-  for the mean trapping time.e., the mean time between pore-
gated a grid ofsquaré porelike regions joined through rect- to-pore transitions and the (scaled diffusion coefficient
angular bottleneckg.e., channels or gatgto clarify the role dc_m_=(Ay)2/(27-trap), whered, o is given by Eq.(21).
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D. Application to electrophoresis

4 —W v
For low field intensitiesE (dimensiona), the rate of suc- L (a)
cessfully attempted jumps from pordo porei =1 will also .- M =10
depend on the work performed, viz., 2% -
; TAS+AW w3 v ¥
isix1~eX _kB—Ti ( ) - 0 g";- :!.%._
S ' 'ﬂ..’ _— 'i. 4 i ) s
whereAW= FQE|AY|L/2 andQ=Mq is the net charge of > o .:-': Lo
the polyelectrolyte. Therefore, the electric field effectively o -2 ‘r#s ??' "*"—
lowers the energy barrier in the field direction while simul- € y— H Y
taneously increasing the energy barrier in the direction oppo- . N ’ N ’
site the field. Using the results of Sec. Il C, we may now 8_ 4 - He
write the trapping time as @ £ . |
c -6 . e K . M
=% 2“ » s#:
Ttrap + _ ‘ -
Z—%NEXP{M|AY|[8M(M)+8]}- (35 1%
- : : ‘ %
where we distinguish between the forwardt  and back- 2500 5000 7500 10000 12500 15000 17500 20000
ward (—) trapping timesr,,. When the fields is directed
in the +y direction. We have also implicitly defined the time T
critical (mobility) field
1) OM} 7 &
e, (M)~ 1-— 36 e
ATyt b (39 e
6 -
above which the electric forces overcome the entropic forces. R

We note that ,(M) decreases with molecular sik if the
narrow channels are not fléte., if p is not infinitg. In other
words, flat channels arqualitatively different because the
critical field necessary to overcome entropic barriers would
then be given by the prefactor in E@6) and, consequently,
be independent of molecular size. Wher s ,(M), the ef-
fect of the strictures should become negligible and one :
should recover the results of Sec. Ill B for the case of an
unperturbed free-draining cdii.e., Tyap: — 7o~ as given by

S
B
P
o'.
:
- * 3
.
. . .
g
. .
. 4
B
B
< 3
5
qR,,
ot
o *
k3 '-..

pore position y,. / |Ay]
‘gi:.

Eq.(28)]. Note that Eq(35) is valid strictly whens <e , and : (b)
thus Eq.(36) must be taken in the context of a linear ap- 1
proximation to the actual critical field. M =20
0
IV. SIMULATION RESULTS 2500 5000 7500 10000 12500 15000 17500 20000

The simulation algorithm was written it language.
Simulations were carried out on both Sun and IBM UNIX time T
computer workstations. The simulation parameters were
p=1 for the radius of the semicircular protrusions and the Fig. 4. Longitudinal position of the center of massaled ac-
periodicity of these protrusions was fixed |[dty|=3. The  cording to pore index. . /|Ay|) for two chains of differing mo-
springs were characterized by=5 Kuhn segments, which |ecular sizeM in the absence of an external field=0) plotted as
leads to an unperturbed mean spring extendibd] of  afunction of time. In@) we have aM = 10 bead chain and ifb) we
((Ar)?)y=~0.16; from Eq. (18), it then follows that have aM =20 bead chain. Both migrate in tubes with characteristic
rgO%(M/37.5)1’2 and thus the unperturbed radius of gyrationdiametersd:=2.8 andd,= 0.8 with pores separated by a distance
satisfies the conditionsrgo<|Ay| as well asryo<p for  of [Ay|=3. The hoppinglike motior(i.e., from pore to poreis
M <40. Also, we sef 7,,,,= 0.5 andm= 1000 for the maxi- indicative of an activated process that, in the case=e0, is purely
mum time increment and the damping parameter, respe@ntropically driven.
tively, in order to ensure against stochastic cooling. Finally,
the walls have potentials characterized By=1 and
o=p/10=0.1 [see Eq.(15)]; the maximum jump size al- In the case of zero electric field, the dynamics is regu-
lowed for any bead was thus conveniently set tolated, in those cases wherg,>d,, by the entropic barriers
o/4=0.025 in order to lower the frequency of boundary con-and, consequently, the motion of the center of mass can be
dition violations(e.g., spring overextensions and jumping in- described as an unbiased hopping process as depicted in Fig.
side a wall protrusion 4(a) for a M=10 bead chain within a tube of diameter

A. The zero-field case
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2 120
B 0.09! Fit = 0.099(10) x [ 1 - 0.0156(61) x M / (p x dy) ]
£ 100
=]
g 80 E 0.08
2 =
2 60 X
= — 0.07
§ 40 g
:;3 20 £ 006
E =
(=%

0 02 04 06 08 0.05

radii of gyration 15 20 25 30
M/(pxd,)
< 60 . o .
S| FIG. 6. Unconditional trapping time,,, plotted as a function of
é 50 the (minimum) channel widthd, for a field intensitye=0. The
g vertical scale is Ipry,,/ 7o]d3/M (7, is the effective mean first
§ 40 passage time in the absence of strictukelile the horizontal scale
= is M/pd,.
=]
£ 30 , . _
% equivalent and we findr,)~0.30 and(r4y)~0.29 (with
s 920 standard deviationarg,~Ary~0.11). However, wher’
fn €[0,1/3], which corresponds to being in a narrow channel
£ 10 [Fig. 5b)], the chain is squeezed in the direction (i.e.,
E transverse to the tube axiand we obtain(r,)~0.24 and
2 0 (rgyy~0.34 (with standard deviationsAry,~0.07 and
0 02 0.4 0.6 0.8 Arg,~0.15). Thus the strictures cause the polymer chain to

radii of gyration stretch in the tubdi.e., y) direction while simultaneously
squeezing its perpendiculax)( component.
We now examine the scaling form of the unconditional

for both the transverse and axial radii of gyratiog, andry , for Lrapplng time 74p (deflned as the mean .f|rst passage time
. i, etween consecutive pore cenjer&ccording to Eq.(33),

two ranges of the fractional pore positio’ of they component h led | ithmi . 1+ 1d2M h :

of the center of masg, ., of aM = 10 bead polymer in the absence the scaled logarithmic ratio I7rap .TO] of! [where 7, 15

of an electric field £=0); this corresponds to Fig(@. We define  the effective mean first passage time, given by €3, in

the fractional pore positon asZ=mink,1—k] with the absence of stricturggersusM/pd, should reveal, to first

k=[yemmodAy|1/|Ay]). Whene[4 3], the chain occupies the Order, a strgight line W@th a _slope_ ¢ 6 and an intercept.

porelike regions of the tube where it is unperturbed. However, whedlowever, since Eq(33) is valid strictly for smalld,/2p and

#e[0,3], which corresponds to stricture regions, the chain isM/pd, ratios, we opted to fit only those datsee Fig. &

squeezed in the transverse) (direction and is simultaneously that satisfied the conditiordy,/2p<<0.5 anddM/pd,=<0.6.

stretched in the longitudinaly direction. The fit is reasonable and the resulting values for the topo-

logical t f t =0. 1
d;=2.8 (and thusdy=0.8). We note that the molecule ;’E'g%lgg(rg‘;“)e ers are found to bé=0.099(10) and

spends a proportionately small amount of time in the stric-
ture regions(i.e., the jumps are quite fagsivhereas, in the
porelike regiongi.e., in the spatial voids the time spent is
much longer, as one might expect when entropic barriers are Upon the application of an external electric fidlsee
high. For a larger molecule, say wit =20[Fig. 4b)], the  Figs. 4a) and 7b)], the hopping process becomes biased
trapping within poregvoids) is more severe and the polymer (forward jumps are favoreand the(forward mean jumping
thus spends proportionately more time trapped between théme is reduced. This is especially true for field intensities
two stricture extremities of a pore. In Fig. 5 we plotted theabove the critical fieldi.e., e>¢,(M), as shown in Fig.
distribution functions(in arbitrary unit$ for both the trans- 7(b)] whose value we will now determine for various mo-
verse and axial radii of gyration,, andr 4, for two ranges of  lecular sizesV.

the fractional pore positiof””) of they componenty. , of The forward trapping timer,,. with respect to the field
the position of the center of mass ofva=10 bead polymer; intensity ¢ is plotted in Figs. 8)-8(d), viz.,, In
here we define the fractional pore position @&  [7yap+ 1(210)]/(M|Ay|) vs & for molecules of size(a)
=min[k,1—k] with k=[y.mmodAy|]/|Ay| and|Ay|=3. M=10,(b) M=20,(c) M=30, and(d) M =40 for a channel
When 7¢[3,3], that is, when the chain is in the wide re- with maximum diameterd;=2.8 and minimum diameter
gions of the tubgFig. 5@)], both directions are spatially dy=0.8. Superposed on these graphs is the predicted

FIG. 5. Plotted are the distribution functiofia arbitrary unitg

B. Electrophoresis
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FIG. 7. Longitudinal position of the center of massaled ac-
cording to pore indey, , /|Ay|) foraM =10 bead chain in a tube
with characteristic diametexs;= 2.8 andd,=0.8 plotted(pore in-
dex vs time for a field intensity (a) £=0.005<g, and (b)
£=0.06>¢,, whereg ,(M=20)=0.0396).

(dashedl line e —¢,(M) valid for e<e,(M). This expres-
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relatione, (M)~0.057(3] 1—M/71(15)] (see Fig. 9. Our
simple analytical model thus provides an adequate descrip-
tion of the physics of electrophoresis in entropically inhomo-
geneous media.

C. Phase diagram for entropic trapping

We now present a phase diagramlike description of the
entropic trapping of a polyelectrolyte. In Fig. 10 we give our
simulation results for &M =10 bead chain migrating in a
tube with diametersl;=2.8 andd,=0.8. We plotted the
logarithm of the relative forward trapping time
l0g1d Tyapt /(270) ] versus the logarithm of relative recipro-
cal field strength log{e,/e]. The solid line is the predic-
tion for the limiting case of a free chain lgf7o, /(27)]1,
where 7y, is given by Eqs.(26)—(28). Three separate re-
gimes can be identifieda) a high field asymptotic regime
where the forward trapping time approaches the free-chain
limit (note the unit slope (b) a transition regime around the
critical field, and, finally,(c) a plateau regime for vanishing
field intensitiess <g, , where the dynamics is dominated by
entropic effects. The distance between the plateau and the
limiting curve (the horizontal part of the solid linecan be
taken as a quantitative measure of the degree of entropic
trapping. This distance for fields larger than the critical field
can be regarded as a measure of the frictinduced through
collisions with the stricturgsagainst the motion of the chain.
The critical field is shown to be that field for which the
(forward) trapping time decrease below the transit time) 2
predicted for a free chain in the vanishing-field limit; thus
the critical field appears at the intersection pdigf0). Un-
derstanding how this diagram varies for different molecular
sizes and stricture geometries is obviously the key to opti-
mizing a polymer separation system that uses inhomoge-
neous sieving medig21]. This is planned to be discussed in
a forthcoming article.

D. Longitudinal diffusion coefficient d¢, for e>¢,

Above the critical fielde ,, the hopping mechanism can
be modeled as a directed walkere in one dimensigrwith
a mean jumping timér,,.) and a fixed jump sizfAy|. In
this limit, the variance of the(forward jumping time
Thraps = Thapt ) —( Tuap+ )2 May be related to the longitudi-

sion was found from substitution of the fitted topological nal diffusion coefficiend, | via the expressiofi22]

parameters®) and ¢ (from Fig. 6 into Eqg. (36); the critical
field is thus predicted to obeye,(M)~0.052(5)
X[1—M/64(25)]. The predicted linddashed is indeed in

|AY|2 O'tzrap+
dem)~—5—

2 <7'trap-¢—>3 .

(37

reasonable agreement with the simulation data for field in-

tensitiess <¢ (M), but underestimates the trapping time for In Fig. 11 we have plotted the longitudinal diffusion coeffi-
larger field intensities; this is largely due to the saturationcientd., as given by Eq(37), vs log(e) for a M=10
limit of 74, as given by Eq(28). Note the poor agreement bead chain in a tube with characteristic diametefs-2.8

between the predicted behavior and the data forMhe40

anddy,=0.8. We find that there exists a critical field intensity

bead chain. This was anticipated since the free radius ofp(M=10)~0.2 at which the diffusion coefficiend
gyrationr 4 is now larger than the radius of the semicircular reaches a maximum value. Our resuhst shown indicate
protrusionsp and thus theM =40 bead chain does not quite thatep(M) is a decreasing function of molecular sizk as

meet the criteria(i.e., rqo(M)<p) for which Eq. (31) is

expected. This implies the existence of an intermediate re-

valid. The critical field intensities, manifested as the fieldgime between the low fielde(<e,) regime, dominated by
intensity for which the best fisolid) curve crosses the field entropic trapping, and the high-field &ep) regime, which

axis, can be fitted linearlyto a good approximatignwith
respect taM (see Fig. 9 as predicted from Eq36); the best

is characterized by th@lmos} free electrophoretic drift of
the chain. In the intermediate field regime, (e <ep), the

straight line fit through our critical field intensities yields the transitions are all in the direction of the field since the elec-
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FIG. 8. Forward trapping time,p, plotted as Ifiryap. /(270)1/(M|Ay|) versuse for molecular sizega) M =10, (b) M=20, (c)
M=30, and (d) M=40. Superposed is the predicted behavig(M)—¢ for small field intensitiese<g,(M) where one has
£,(M)=0.057(3]1—M/71(15)] as found from the zero-field data of Fig. 5. Note that the agreement is excellebt<$at0, while for
M =40 the agreement is poor due to the fact that the radius of gyration then becomes larger than the radius of the semicircular protrusions.

tric field induces Coulomb forces that are much stronger than In Fig. 12 we propose a schematic of the phase diagram
the entropic forces on the chains; however, as the detrappirfgr electrophoretic entropic trapping; depicted is the molecu-
process is still sufficiently randorfi.e., the distribution of lar sizeM as a function of scaled field intensity We see
detrapping timesr,, . is still relatively broag, a large spa- three different regions bounded by the two critical lines

tial dispersion of the molecules results over time. e,(M) andep(M). In region | £<e,), we are in the en-
tropic trapping regime and the field plays a minor “biasing”
0.0551 N (VD = 0.0568(30) x [ 1- M/ 71015) ] ro!e. In_ regi_on 1] (g_>sD), we enter the fr_ee electr_ophoretic
drift (high field regime where the entropic potentials play a
0.05 minor “frictional” role. Region Il (e ,<e<egp) is the inter-
. mediate crossover regime where the field can overcome the
“ 0045 effect of entropic trapping on the mobilitg, but not its
% effect on the longitudinal diffusion coefficie, ,, ;. Be-
E 004 cause the two critical line#(e,) and M(ep) have finite
8 negative slopes on the diagram, the optimum field intensity
% 0.035 for a polydisperse sample, bounded by molecular sizes
b M;<M<M,, is given by e~¢,(M,) with e<ep(M,)
0.03 since we do not want the electrophoretic bands to smear out
0.005 [e.g., choosings~e¢,(M;) would prove disastrous and no

o 10 20 30 20 separation would be possil&his represents a limiting cri-
terion for separation to be possible in such systems. Note that
in the high field regime >&ep(M;), the mobility « is of the

FIG. 9. Critical fielde, plotted vs molecular siz&/ for the  order of unity for all species and separation is minimal. Thus
cases shown in Fig. 8. the existence of the intermediate regime, where the longitu-

molecular size M
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FIG. 10. Phase diagram for ld =10 bead chain in a tube of
diameterd;=2.8 and of channel diametel,=0.8. Here we plot
the logarithm of
l0G1d Tirap+ /(270)] versus the logarithm ofrelative) reciprocal
field strength logde,/e]. The solid line represents the limiting
(free-drift) behavior of polyelectrolytes in the absence of constraint
logid 79+ /(27)], wherery, is given by Eqs(26)-(28).

-2

lOglo [ Ttrap+/(2 X To)]
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FIG. 12. This schematic phase diagram of molecular Mzes
field intensity ¢ reveals three regions bounded by the two lines
showing the molecular size-dependent critical fieldgM) and
ep(M). In region I, we are in the entropic trapping regime. Region
Il is an intermediate regime where the applied electric field domi-
nates over the entropic effects. Finally, in region Ill, we enter the
free electrophoretic drift regime where the strictures merely provide
“frictional resistance.”

dinal diffusion coefficient becomes catastrophically large, . , . L
limits the prospects of being able to use entropic trapping a§trlctur_e$, for which the strlc_:ture size is of the order of the
a means of obtaining high resolution electrophoretic separdlimensions of the polymeric coil, are thermodynamically

tion of polyelectrolytes.

It was demonstrated by Baunmtiger and Muthukumar
[8—10] that a series of open spadg®res and confinements

longitudinal diffusion coefficient d,,,

FIG. 11. Longitudinal diffusion coefficientl. ,; plotted as a
function of the base 10 logarithm of the field intensityfor a
M =10 bead chain in a tube with diametats=2.8 andd,=0.8.
Note the existence of a critical field intensity,~0.2 for which

0.08

0.06

0.04

0.02

V. CONCLUSION

SD(M=10)z0.2 . ...

4

log,, [ € (scaled field intensity) ]

-3 -2 -1 0

equivalent to entropic traps and entropic barriers, respec-
tively. The strictures create entropic barriers possessing a
height that controls the rate of transport between the pores.
In this paper, we considered the effect of electric fields on the
entropic trapping process in a model system; we revealed the
existence of three electrophoretic regimes for molecular spe-
cies that can be fully contained within the pores and stricture
regions. The special case where the polyelectrolytes are dis-
tributed over many pores was not considered. Such a study
would prove most interesting, especially if one can observe a
transition to the reptation regime.g., species whose radii of
gyration are in excess of, say, 2—5 times the average pore
spacing are reputed to undergo such transit[@33).

We have shown that, in our model system of pores and
“round” strictures, the electrophoretic transport of polyelec-
trolytes is an activated process whereby the rate of entropic
barrier passage is controlled by the product of the attempt
frequency with an exponential in both the chain’s entropy
decrease during confinement inthe barrier &ndhe drop in
electric potential energy. This has important consequences in
our understanding of Ogston sieving dynamics of DNA gel
electrophoresis as one expects a transition from the Ogston
sieving regime to that of entropic barriers.

We also demonstrated the existence of a critioabbility)
field intensity,e , , which we related to the characteristics of
two different phase diagrams. These diagrams not only ob-
viate the different transport regimes, they also serve to char-
acterize the degree of entropic trapping in both a qualitative
as well as a quantitative fashion for the given experimental
setup. Note that the existence of a criti¢edobility) field

demy is @ maximum. The rise from a zero-field value of &, for single-stranded DNAssDNA) was verified experi-
d ¢ |~0.01 tod, y~0.084 represents more than an eightfold in- mentally through the studies of Mayer, Slater, and Drouin

crease.

[13] in polyacrylamide gels; it was found that, for ssDNA
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below 1000 bases, a field intensity of 19 V/cm is beyond the

critical field e,
M =400 bases, the critical field s, (400 bases=9.4 Vicm.
An extensive experimental investigation ef,(M) is in
progresq 24].
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Interestingly, as entropic trapping is an activated process,

and, for molecular sizes of the order of it may be possible to exploit stochastic-resonance effects

[25] in entropic trapping systems; one would then require
that the pulse duratiofof the ac component of the figldbe
set to conform with the time between trap6.e.,

We note that, in our nonexcluded volume model, the criti-7, ¢~ 750) . It is not unreasonable, then, to suspect that
cal fielde ,(M) is molecular size dependent due to the topo-such resonance effects play a major role in techniques such
logical interaction between the polymer chain and theas field-inversion gel electrophoresis, where great improve-
(round stricture; were the stricture flat and long enough toments in the resolution of electrophoresed molecular bands is
fully contain the chaingno spillouy, this molecular size de- possible over other techniqug26,27].
pendence would disappedself-excluded-volume interac- It is indeed the competition between the mobility and the
tions would not alter this conclusidbrHowever, in the strong diffusion coefficient(over the range of applicable field inten-
confinement limit where spillout of the monomers occurs,sitieg that will determine the resolution in entropic trapping
the work of Baumgener and Muthukumaf9] would sug-  systems. In our model system and for field intensities below
gest the scaling relationship the critical fielde ,, the mobility is very molecular size de-
pendent, but, in fact, small; when the field intensity exceeds
the critical fieldep , the mobilities approach unity; for inter-
mediate field intensities ,<e<ep, band broadening be-
comes a limiting factor due to the large diffusion coefficient.
The existence of the, as of yet, unknown intermediate regime
Il (see Fig. 12renders entropic trapping an unlikely mecha-
nism for high-performance separation systems if pulsed

v
) welon].
(38

v
Tiraps R
27 ~exp{M[f(do> 2(f+1)

wheref is the fraction of monomers inside the stricture dur-
ing the transition and is Flory’s exponent =3 and v~ fields are not used.

2in d=2 and 3 dimensions, respectivglBy strong con- Relaxation phenomena, although not discussed explicitly
finement, we mean that the pores are large enough to fullin this article, also play a role in entropic trapping systems
contain the chains between transitions while, during transiduring electrophoresis experiments. For instance, one typi-
tions, only a fractionf of the beads are confined within the cally requires fairly large fields to minimize the duration of
stricture and the remaining (1f)M beads are distributed the separation. Unfortunately, the maximum field strength
over the two adjacent pores. Equati@®) applies strictly for  permitted by an entropic separation process is in fact limited
a self-excluded-volume chain in a “toy model” network due to the finite relaxation times of polymeric coils, which,
comprised of pores of sizé; and of strictures of diameter upon emerging from a stricture, remain somewhat perturbed
dy and length\. In this limit, f is molecular size dependent (collapsed over finite (relaxation time scales. Indeed, for

and given by

f~ndi " IM L (39
Consequently, we may rewrite EB8) in the form
T
o ~eXAMIAY|L(e, (M) Fel}, (40

where the molecular size-dependent criticalobility) field
is now given by

1
n,— 5

g, (M) 5

. (4D

. M )(do) 1/v
n R
T dg”)\ dy

where the topological parameteg=\/d, may be regarded

~ M[AY]

large field intensities, the free-drift time between strictures
can in fact be less than the relaxation time. This engenders,
therefore, yet another criticélelaxation field intensity[17],
which, for Rouse-like relaxation, scales &g~ |Ay|/M?,
where |Ay| is the interpore distance. Of course, one must
ensure that the field intensity is kept below this relaxation
critical field in order to remain in the entropic trapping re-
gime (the conformational entropy is indeed linked with the
relaxation of the chain A further development along these
lines is planned to appear in a forthcoming study.
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