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We consider the electrophoretic drift of a polyelectrolyte~such as DNA! in a narrow channel or capillary
with a spatially varying bore size~this can be thought of as a simplified gel model!. These bore-size variations
reduce the migration pathway to a series of pores and strictures creating an entropic potential surface through
which the polyelectrolyte must migrate. The frequency of barrier crossing~probability of jumping to an
adjacent pore! is described as an activated process that is dependent on the change in confinement entropy and
on the electrostatic potential energy. At low field intensities, the strictures induce an entropic-trapping regime
where the time between traps is a strong function of the molecular size; our simulations corroborate our
analytic results. Moreover, we examine two critical field intensities: the first,«m , is the field intensity beyond
which the entropic barriers are overcome in an inhomogeneous system, while the other,«D , is that for which
the longitudinal diffusion coefficient is a maximum.

PACS number~s!: 82.45.1z, 83.10.Nn, 87.15.2v, 66.10.Cb

I. INTRODUCTION

The dynamical properties of macromolecules in porous
media are immediately relevant to many situations of practi-
cal importance including filtration, oil recovery, size exclu-
sion chromatography, transport of solute through mem-
branes, and the Human Genome Project where
electrophoretic processes are used to separate DNA frag-
ments of various sizes@1#.

The nature of the interactions between DNA and the sepa-
ration media during electrophoresis is yet poorly understood.
This has limited our understanding as to which transport
mechanisms are best suited for effective separation of
nucleic acids. Although sieving is believed to be the main
mechanism in the case of smaller macromolecules@2#, in
many cases, however, a number of transport mechanisms
~e.g., Rouse dynamics@3#, reptation@4,5#, geometration@6#,
and self-similar hernias@7#! may be involved. Recently,
many authors@8–13# have investigated the phenomenon of
entropic trapping. Entropic barrier transport applies to cases
in which the equilibrium dimensions of the macromolecules
are comparable to the mean pore size of the medium. Typi-
cally, entropic trapping is manifested in the form of a diffu-
sion coefficient@8–11#, or an electrophoretic mobility@11–
13#, which is more strongly molecular size dependent than
either the Rouse or reptation predictions. We will investigate
the manifestation of entropic traps in our model system of
strictures and pores and, of relevance to electrophoresis, we
will also introduce two critical field intensities«m and
«D ;«m is the field intensity for which the electric forces can
overcome the entropic barriers and«D is the field intensity
for which the longitudinal diffusion coefficient reaches a
maximum.

This paper is organized as follows. First, we describe our

model system in Sec. II A and our Brownian dynamics algo-
rithm throughout Secs. II B–II E. We then follow with a sim-
plified analytical investigation of our entropic-trapping
model in Sec. III. Simulation results follow in Sec. IV, and
we conclude in Sec. V by examining the experimental sig-
nificance of our results.

II. SIMULATION METHODOLOGY

A. The system under study

Our two-dimensional~2D! system is comprised of an in-
finite channel with semicircular protrusions extending in-
wardly from the opposing walls~see Figs. 1 and 2!. We
assume the protrusions to be easily permeated by the solvent
ions but completely impermeable to the polyelectrolytes;
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FIG. 1. Computer simulation snapshot of aM520 bead chain in
a channel with maximum diameterdT52.8, minimum diameter
d050.8, protrusion radiusr51, and interpore spacinguDyu53.
The gray-shaded region is a circle whose radius is equal to the
chain’s radius of gyration (r g'0.76) and is centered about the
chain’s center of massr c.m.. As the chain is essentially unperturbed
within the porelike regions~i.e. 2r g0,dT), the chain must first be
compressed before passage through a stricture becomes possible.
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thus the electric field intensity is to be assumed constant
throughout. The strictures have both a well-defined periodic-
ity and size, which facilitates the theoretical analysis. The
more general case of a random distribution of strictures is
currently under study. Note, however, that our strictures are
not made up of narrow, flat channels, as was the case in
previous studies@10#; we will see later that these channels,
besides being somewhat more realistic, lead to qualitatively
different physics in the presence of an electric field. We now
adopt the following notation to describe our system. The
~maximum! tube diameter isdT , while the radius and peri-
odicity of the semicircular protrusions arer and uDyu, re-
spectively, with 2r,$uDyu,dT%. Therefore, the minimum
channel width isd05dT22r. For the purpose of this study,
we will be interested in the dynamics of polymers with an
unperturbed radius of gyrationr g0 in the range
d0,2r g0,$uDyu,dT , 2r% such that the conformations of the
polyelectrolytes are relatively unperturbed inside the open
~porous! regions whereas they are squeezed~but entirely
contained! inside the narrow channels.

B. Brownian dynamics

We employ a modified 2D version of the Rouse model
that describes a free-draining polymer chain as a succession
of M ‘‘beads’’ at positionsR1 ,R2 , . . . ,RM separated by
M21 ‘‘entropic springs’’; each spring represents a sequence
of N Kuhn statistical segments of lengtha. As is customary,
we neglect excluded volume and hydrodynamic effects and
we work in thestrong-damping limitof Brownian dynamics
~inertial terms are ignored!. We may thus write our equation
of motion for beadn (n51,2, . . . ,M ) in the generalized
~position! Langevin form

z
dRn

dt
5~12dn,M !Fs~n11,n!1~12dn,1!Fs~n21,n!

1 (
constr

Fconstr1qE1fn~ t !, ~1!

wherez is the friction coefficient of a single bead,Rn is the
bead position,Fs(m,n) is the entropic spring force on bead
n due to beadm, d i , j is a Kronecker delta function,F constr is
the force on beadn due to an external constraint~e.g., the
tube wall!, qE is the force due to the electric fieldE acting
on the chargeq of the bead, andfn is the stochastic force
acting on beadn. The stochastic~Langevin! force fn is char-
acterized by the moments

^ f na~ t !&50,

^ f na~ t ! f mb~ t8!&52zkBTdnmdabd~ t2t8!, ~2!

with $a,b%5$x,y% being a coordinate designation (x andy
are orthogonal!. One must discretize these equations and ren-
der them into dimensionless form. From Eq.~2!, we can
establish the relation

^ f na
2 ~ t !&5

2zkBT

Dt
, ~3!

whereDt is the correlation time of the stochastic force~i.e.,
our integration time step!. The stochastic forcef na is chosen
such as to obey the Gaussian distribution

P~ f na!d fna5
1

A2p^ f na
2 &

expS 2
f na
2

2^ f na
2 & D d fna . ~4!

Let us implicitly define the dimensionless stochastic vector
hn5(hnx ,hny), viz.,

f na~ t !5S 2zkBT

Dt D 1/2hna~ t !, ~5!

wherehna is Gaussian distributed with zero mean and unit
variance

^hna~ t !&50, ^hna
2 ~ t !&51. ~6!

If we now define the natural units

f L5
2kBT

L
, tL5

zL2

2kBT
, L5Na ~7!

for force, time, and length (L5Na being the maximum pos-
sible spring extension!, respectively, the equation of motion
can be rewritten in the scaled and discretized two-
dimensional form

Drn~t!5DtF ~12dn,M !fs~n11,n!1~12dn,1!fs~n21,n!

1 (
constr

fconstr1«G1ADt @hnx~t!ex1hny~t!ey#,

~8!

FIG. 2. From upper left to bottom right: computer simulation
snapshots of aM520 bead chain migrating in a rough tube~with
maximum diameterdT52.8, minimum diameterd050.8, protru-
sion radiusr51, and interpore spacinguDyu53) under the effect
of a weak field«50.005 directed upward. Figure 1 is represented in
the fourth frame. The unperturbed radius of gyration for the
M520 bead chain isr g0'0.73; thus the chain is essentially unper-
turbed within the porelike regions~i.e., 2r g0,dT) while, in the
stricture regions, we have compression since 2r g0.d0 . The ~di-
mensionless! time between frames isDt5310.
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whereex andey are unit vectors along their respective coor-
dinate axesx and y. In Eq. ~8!, we have also implicitly
defined several scaled variables, namely,

Rn~ t !

L
→rn~t!,

Fs
f L
→fs ,

F obst

f L
→fobst,

qE

f L
→«,

t

tL
→t,

Dt

tL
→Dt. ~9!

In the simulation, we compute the forces on all beads and
follow with simultaneous displacementsDrn for all beads
(n51 to M ). Integration problems can occur when spring
extensions tend to values greater than the maximum spring
lengthL5Na or when beads attempt to enter the walls. This
requires careful adjustment of the time stepDt ~see Sec.
II E!. In the rest of this paper, all variables are scaled~di-
mensionless! variables unless specified otherwise.

C. Entropic springs

The effective contractile force2Fs , also known as the
entropic spring force, arises from the loss of entropy in the
system ofN Kuhn statistical segments of lengtha that com-
prise a spring~or subchain! when the latter is given an ex-
tensionDr . For ad-dimensional subchain where the ends are
separated by amean distanceDr , and in the so-called stress
ensemble, we have@14#

Dr5
I d/2~ f a!

I d/221~ f a!
, ~10!

where I n is the modified Bessel function of ordern and
f a5Fsa/(kBT)52 f s /N. For d53, Eq. ~10! reduces to the
well-known Langevin functionL( f a)5coth(f a)21/f a . In-
verting the Taylor series expansion of Eq.~10! yields the
force-extension relation

f s5
Nd

2
Dr F11

d

~21d!
~Dr !2

1
d2~81d!

~21d!2~41d!
~Dr !41••• G , ~11!

from which one yields the general form of the harmonic
spring constant

kh5
Nd

2

f L
L

5d
kBT

Na2
, ~12!

where we have reintroduced the appropriate dimensional
units. While the use of harmonic springs may lead to un-
physical stretching@15#, the use Eq.~11! is limited due to
slow convergence. Consequently, we approximate the expan-
sion using the ‘‘modified Pade´ approximant’’@14#

f a5
2 f s
N

'
Dr @d2~Dr !2#

12~Dr !2
, ~13!

which proves remarkably accurate~the error is less than
6.5% over the whole range of spring extensions ford52)
while maintaining the correct asymptotic behaviour forboth
Dr→0 andDr→1.

D. Tube pathway

The tube pathway is divided into two components~con-
straints!: a flat tube and a series of periodic semicircular
protrusions extending inwardly from the tube walls. Both are
represented by hard cores with a Lennard-Jones-like soft-
core repulsive force extending a distances from the hard
core. If Dr is the distance between the obstacle surface and
the pointlike polymer bead, the force is directed perpendicu-
lar to the tube pathway surface, viz.,

f constr~Dr !→`~Dr<0!, ~14!

f constr~Dr !5A~Dr1s!F 1

Dr 212sDr
2

1

3s2G2
~0,Dr,s!, ~15!

f constr~Dr !50 ~Dr>s!. ~16!

Thus there is no discontinuity atDr5s.

E. Adaptive stepsize control

1. Time cutting

Our stochastic differential equation integrator exerts adap-
tive control over its own progress, making frequent changes
in its step size when system integrity violations occur. Such
violations result in the time incrementDt being divided by
some convenient value~4 in our implementation! and the
step being reattempted. Thus the time increment is not a
static quantity, but is reduced in accordance with the stresses
built up in the chain. A small time incrementDt allows the
system to tiptoe through rough terrain, while large time in-
crements permit great strides through smooth potential sur-
faces. Thus the time increment is continuously optimized,
which results in significant gains in terms of efficiency. Such
an optimization scheme also permits the incorporation of a
maximum spatial step size to better suit the dimensions of
the system under study. This has proven to be most useful for
a recent study of electrophoretic collisions@16#.

However, all things being equal, it is clear thatDt will
tend to be smaller when large stochastic forces are chosen
since large forces tend to compromise system integrity more
often than do small forces. Therefore, large stochastic forces
will, on average, receive smaller time increments~i.e., are
given less weight! than will smaller stochastic forces. We
refer to this time bias as‘‘stochastic cooling’’ since this bi-
asing is tantamount to lowering the temperature of the sys-
tem.

2. Damping the evolution of the time increment

Fortunately, there is a simple way of sidestepping stochas-
tic cooling problems. If we relax the requirement that every
stochastic term receives the samea priori amount of inte-
grated time and simply demand that each receivesapproxi-
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mately the same amount, then stochastic cooling can be
averted. There exist a number of ways in which this may be
accomplished; we opted to damp the evolution of the time
increment. Let us consider a case where a given time step
Dt0 leads to the system correctly performing a time step.
The next time incrementDt1 is then chosen to be

Dt15Dt0
~m21!/m~Dtmax!

1/m, ~17!

whereDtmax is a user-defined maximum time increment and
the damping parameterm can be chosen large enough to
ensure that successiveDt i ’s increase slowly following each
time step. Therefore, for simulations withm large, a histo-
gram plot of the net integrated time per bin with respect to
the ~binned! Langevin forces will, effectively, be equivalent
to the probability distribution function of Langevin forces
~i.e., the bias will be removed!. Moreover, this damping per-
mits residual stresses in the system to relax smoothly while
the time increment is being optimized.

3. Effects of the damping parameter

A series of simulations@17# were carried out to determine
the relationship between the choice ofm and simulation ac-
curacy as well as CPU time. Several different damping fac-
tors were chosen for the case of an unperturbed~free! five-
bead chain with a maximum time incrementDtmax50.01.
We first examined the effect ofm on the accuracy. The re-
sults are plotted in Fig. 3. For aM55 bead chain, the self-
diffusion coefficient of the center of mass is expected to be

d cm0
50.1 @from Eq. ~21!#. As we can see, there is a marked

discrepancy between the expected value and the simulation
points asm decreases below aboutm*51000. Hence, by
sufficiently damping the evolution of the time step, we effec-
tively eliminate stochastic cooling. As for the effect ofm on
CPU process time, the results appear in the inset of Fig. 3. As
can be seen, the CPU process time is a monotonic, slowly
increasing function ofm. Thus one can improve simulation
accuracy~i.e., by increasingm) significantly with little pen-
alty with regards to the CPU process time.

III. ANALYTICAL STUDY

A. The free chain

We first review the properties of a free Rouse chain using
our scaled units. Consider a freely jointed chain consisting of
M beads coupled throughM21 springs, with^(Dr )2&0 be-
ing the mean square spring length. We will use the subscript
zero for the unperturbed values of the quantities. The radius
of gyration of the polymerr g0 is given by @see, e.g., Ref.
@18#, Eq. ~I.5.15!#

r g0
2 5

M221

6M
^~Dr !2&0 . ~18!

The self-diffusion coefficient of the center of mass vector
r c.m.(t) is defined by the relation

dc.m.[ lim
t→`

1

2d

^@r c.m.~t!2r c.m.~0!#2&
t

, ~19!

whered is the dimensionality of the space and the position of
the center of mass is given by

r c.m.5
1

M(
n51

M

r n . ~20!

In the Rouse model, the unperturbed value of the diffusion
coefficient is given by

dc.m.05
1

2M
, ~21!

whereas the Rouse~terminal! relaxation time of the end-to-
end vector is

tR05
1

N SMp D 2. ~22!

As for the mean~free-drift! electrophoretic velocity of the
center of mass, it is given by

vc.m.05« ~23!

where « is the scaled field intensity. Thus the~free-drift!
electrophoretic mobilitym[v c.m./« is given by

m051. ~24!

FIG. 3. Effects of the damping parameterm on the diffusion
constantdc.m. for a chain withM55 beads reveal that the critical
threshold value of the damping parameter is approximately
m*51000. The effect ofm on the process CPU time, as carried out
on a SUN model 10 UNIX computer workstation~see inset!, re-
veals that the CPU time is a monotonic, slowly increasing function
of the damping parameterm. The settings were no walls,
Dtmax50.1 for the maximum time increment, andtsim50.5 for the
total simulation time.
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It is indeed because the free-solution electrophoretic mobility
is independent of molecular size that electrophoretic separa-
tion must be carried out in~e.g., gel-like! ‘‘sieving’’ struc-
tures.

B. Free electrophoretic drift of a chain

Let us now consider the case of a polyelectrolyte drifting
freely in a tube without strictures under the influence of an
electric field«. The unconditional mean first passage time
for covering any distanceuDyu is simply given by@19#

t~d!5
tanh@d#

d
t0 , ~25!

where the bias factord is given by

d5
vc.m.0t0

uDyu
5M«uDyu. ~26!

Herevc.m.05« is the velocity given in Eq.~23! while t0 is
the Brownian time for diffusing over a mean square distance
uDyu2,

t05
uDyu2

2dc.m.0
5M uDyu2. ~27!

The corresponding mean first passage times for migrating a
distanceuDyu in the direction of the field (1) or in the
direction opposite to the field (2) are given by the expres-
sion

t06~d!5
6~12e72d!

d
t0 . ~28!

Note that in the zero-field limitd→0, we havet06→2t0
whereas, in the infinite-field limitd→`, we yield the limit-
ing values t01→t0 /d5uDyu/vc.m.05uDyu/« and
t02;e2d→`, as expected. Thus, in our analysis of our 2D
channel with periodic protrusions, lower bounds for both the
mean first passage time and the trapping time will be pro-
vided by Eqs.~28! and ~25!, respectively.

C. Trapping of a polymer chain in the absence of fields

The rate of successfully attempted jumps from porei to
pore i61 is expected to depend on the ratio of the~dimen-
sional! activation energyDG5TDS, due to the change in
confinement entropyDS imposed on the chain by the stric-
ture, to the thermal energykBT, viz.,

G5v~M !e2DS/kB, ~29!

wherev(M ) is the size-dependent rate of attempted transi-
tions. The entropy of a polymer molecule being an extensive
variable, we haveDS;M . For an ideal random-walk chain
and a narrow channel with parallel surfaces, the entropy of
confinement scales likeDS;(r g0 /d0)

2, wherer g0 is the un-
perturbed radius of gyration andd0 is the diameter of the
channel @20#. Muthukumar and Baumga¨rtner @10# investi-
gated a grid of~square! porelike regions joined through rect-
angular bottlenecks~i.e., channels or gates! to clarify the role

of entropically activated diffusion in the absence of electric
fields. We suggest using semicircular protrusions as a ‘‘more
realistic’’ model of the narrow channels in, for example,
polymer gels. Since the polymer molecule will reach a mini-
mum entropy when its center of mass is located in the middle
of the stricture, we can generalize the before-mentioned scal-
ing law using

DS

kB
>2E

0

r g0
dyP~y!S r g0

d~y!
D 2, ~30!

whered(y)5d012r22(r22y2)1/2 is the channel width at
a distancey from the pore center@with d(0)5d0 and
d(y>r)5dT] and P(y) is the local monomer density. We
implicity assume thatdT@d0 and r g0,r. The full solution
of this confinement problem requires a self-consistent calcu-
lation of P(y) for the given geometry. However, we can get
the correct form of the first two terms by simply assuming
that P(y) remains a smooth distribution of widthr g0 cen-

tered aty50; we obtain

DS

kB
>S r g0

d0
D 2F12b

r g0
2

rd0
1•••G , ~31!

whereb is a numerical factor of order unity. The omitted
terms also depend on the ratiod0/2r, which measures the
‘‘flatness’’ of the strictures. We note that the first term~pref-
actor! is the expected result for a flat channel, as discussed
previously. The second term~first correction term! is propor-
tional to r g0 /(rd0)

1/2, the expansion parameter of the series;
this is the relative span of the polymer molecule when it is
centered about the point of minimum widthd0 in the chan-
nel. Obviously, we would recover the results of Muthukumar
and Baumga¨rtner in the limit of flat channels~i.e., when
r→`) as the second term would then vanish. Whend0 is
small, those monomers not situated in the stricture’s narrow-
est section are less confined and the average channel width
experienced is somewhat larger thand0; hence the loss of
conformational entropy is reduced. Interestingly enough, the
critical radius of gyration above which this effect is signifi-
cant is given by the geometric mean (rd0)

1/2 of the two
characteristic lengths describing the strictures. Since the un-
perturbed radius of gyration scales asr g0;M1/2, we may
combine Eqs.~29! and ~31! to yield

G'v~M !expF2
fM

d0
2 S 12

uM

rd0
D G , ~32!

wheref and u are topological constants that take into ac-
count, among other things, the average length of the springs
of the model polymer. The frequencyv(M ) is given by
1/t0 , where the mean diffusion timet0 is given by Eq.~27!.
Thus we have

dc.m.0
dc.m.

5
t trap

t0
5

1

Gt0
'expFfM

d0
2 S 12

uM

rd0
D G ~33!

for the mean trapping time~i.e., the mean time between pore-
to-pore transitions! and the ~scaled! diffusion coefficient
dc.m.5(Dy)2/(2t trap), wheredc.m.0 is given by Eq.~21!.
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D. Application to electrophoresis

For low field intensitiesE ~dimensional!, the rate of suc-
cessfully attempted jumps from porei to porei61 will also
depend on the work performed, viz.,

G i→ i61'expF2
TDS1DW

kBT
G , ~34!

whereDW57QEuDYuL/2 andQ5Mq is the net charge of
the polyelectrolyte. Therefore, the electric field effectively
lowers the energy barrier in the field direction while simul-
taneously increasing the energy barrier in the direction oppo-
site the field. Using the results of Sec. III C, we may now
write the trapping time as

t trap6

2t0
'exp$M uDyu@«m~M !7«#%, ~35!

where we distinguish between the forward (1) and back-
ward (2) trapping timest trap6 when the field« is directed
in the 1y direction. We have also implicitly defined the
critical ~mobility! field

em~M !'
f

uDyud0
2 F12

uM

rd0
G ~36!

above which the electric forces overcome the entropic forces.
We note that«m(M ) decreases with molecular sizeM if the
narrow channels are not flat~i.e., if r is not infinite!. In other
words, flat channels arequalitatively different because the
critical field necessary to overcome entropic barriers would
then be given by the prefactor in Eq.~36! and, consequently,
be independent of molecular size. When«@«m(M ), the ef-
fect of the strictures should become negligible and one
should recover the results of Sec. III B for the case of an
unperturbed free-draining coil@i.e., t trap6→t06 as given by
Eq. ~28!#. Note that Eq.~35! is valid strictly when«!«m and
thus Eq.~36! must be taken in the context of a linear ap-
proximation to the actual critical field.

IV. SIMULATION RESULTS

The simulation algorithm was written inC language.
Simulations were carried out on both Sun and IBM UNIX
computer workstations. The simulation parameters were
r51 for the radius of the semicircular protrusions and the
periodicity of these protrusions was fixed atuDyu53. The
springs were characterized byN55 Kuhn segments, which
leads to an unperturbed mean spring extension@14# of
^(Dr )2&0'0.16; from Eq. ~18!, it then follows that
r g0'(M /37.5)1/2 and thus the unperturbed radius of gyration
satisfies the conditions 2r g0,uDyu as well asr g0,r for
M,40. Also, we setDtmax50.5 andm51000 for the maxi-
mum time increment and the damping parameter, respec-
tively, in order to ensure against stochastic cooling. Finally,
the walls have potentials characterized byA51 and
s5r/1050.1 @see Eq.~15!#; the maximum jump size al-
lowed for any bead was thus conveniently set to
s/450.025 in order to lower the frequency of boundary con-
dition violations~e.g., spring overextensions and jumping in-
side a wall protrusion!.

A. The zero-field case

In the case of zero electric field, the dynamics is regu-
lated, in those cases wherer g0.d0 , by the entropic barriers
and, consequently, the motion of the center of mass can be
described as an unbiased hopping process as depicted in Fig.
4~a! for a M510 bead chain within a tube of diameter

FIG. 4. Longitudinal position of the center of mass~scaled ac-
cording to pore indexyc.m./uDyu) for two chains of differing mo-
lecular sizeM in the absence of an external field («50) plotted as
a function of time. In~a! we have aM510 bead chain and in~b! we
have aM520 bead chain. Both migrate in tubes with characteristic
diametersdT52.8 andd050.8 with pores separated by a distance
of uDyu53. The hoppinglike motion~i.e., from pore to pore! is
indicative of an activated process that, in the case of«50, is purely
entropically driven.
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dT52.8 ~and thusd050.8). We note that the molecule
spends a proportionately small amount of time in the stric-
ture regions~i.e., the jumps are quite fast! whereas, in the
porelike regions~i.e., in the spatial voids!, the time spent is
much longer, as one might expect when entropic barriers are
high. For a larger molecule, say withM520 @Fig. 4~b!#, the
trapping within pores~voids! is more severe and the polymer
thus spends proportionately more time trapped between the
two stricture extremities of a pore. In Fig. 5 we plotted the
distribution functions~in arbitrary units! for both the trans-
verse and axial radii of gyrationr gx andr gy for two ranges of
the fractional pore position~P ! of the y componentyc.m. of
the position of the center of mass of aM510 bead polymer;
here we define the fractional pore position asS
5min@k,12k# with k5@yc.m.moduDyu#/uDyu and uDyu53.
WhenPP@ 1

3,
1
2], that is, when the chain is in the wide re-

gions of the tube@Fig. 5~a!#, both directions are spatially

equivalent and we find̂r gx&'0.30 and^r gy&'0.29 ~with
standard deviationsDr gx'Dr gy'0.11). However, whenP
P@0,1/3#, which corresponds to being in a narrow channel
@Fig. 5~b!#, the chain is squeezed in thex direction ~i.e.,
transverse to the tube axis! and we obtain̂ r gx&'0.24 and
^r gy&'0.34 ~with standard deviationsDr gx'0.07 and
Dr gy'0.15). Thus the strictures cause the polymer chain to
stretch in the tube~i.e., y) direction while simultaneously
squeezing its perpendicular (x) component.

We now examine the scaling form of the unconditional
trapping timet trap ~defined as the mean first passage time
between consecutive pore centers!. According to Eq.~33!,
the scaled logarithmic ratio ln@t trap/t0#d0

2/M @where t0 is
the effective mean first passage time, given by Eq.~27!, in
the absence of strictures# versusM /rd0 should reveal, to first
order, a straight line with a slope2fu and an interceptf.
However, since Eq.~33! is valid strictly for smalld0 /2r and
uM /rd0 ratios, we opted to fit only those data~see Fig. 6!
that satisfied the conditionsd0 /2r,0.5 anduM /rd0<0.6.
The fit is reasonable and the resulting values for the topo-
logical parameters are found to bef50.099(10) and
u50.0156(61).

B. Electrophoresis

Upon the application of an external electric field@see
Figs. 7~a! and 7~b!#, the hopping process becomes biased
~forward jumps are favored! and the~forward! mean jumping
time is reduced. This is especially true for field intensities
above the critical field@i.e., «.«m(M ), as shown in Fig.
7~b!# whose value we will now determine for various mo-
lecular sizesM .

The forward trapping timet trap1 with respect to the field
intensity « is plotted in Figs. 8~a!–8~d!, viz., ln
@t trap1 /(2t0)#/(M uDyu) vs « for molecules of size~a!
M510, ~b! M520, ~c! M530, and~d! M540 for a channel
with maximum diameterdT52.8 and minimum diameter
d050.8. Superposed on these graphs is the predicted

FIG. 5. Plotted are the distribution functions~in arbitrary units!
for both the transverse and axial radii of gyration,r gx andr gy , for
two ranges of the fractional pore position (P ) of the y component
of the center of massyc.m. of aM510 bead polymer in the absence
of an electric field («50); this corresponds to Fig. 3~a!. We define
the fractional pore position as P5min@k,12k# with
k5@yc.m.moduDyu#/uDyu). WhenPP@

1
3,

1
2], the chain occupies the

porelike regions of the tube where it is unperturbed. However, when
PP@0,13], which corresponds to stricture regions, the chain is
squeezed in the transverse (x) direction and is simultaneously
stretched in the longitudinal (y) direction.

FIG. 6. Unconditional trapping timet trap plotted as a function of
the ~minimum! channel widthd0 for a field intensity«50. The
vertical scale is ln@t trap/t0#d0

2/M (t0 is the effective mean first
passage time in the absence of strictures! while the horizontal scale
is M /rd0 .
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~dashed! line «2«m(M ) valid for «!«m(M ). This expres-
sion was found from substitution of the fitted topological
parametersu andf ~from Fig. 6! into Eq. ~36!; the critical
field is thus predicted to obey«m(M )'0.052(5)
3@12M /64(25)#. The predicted line~dashed! is indeed in
reasonable agreement with the simulation data for field in-
tensities«!«m(M ), but underestimates the trapping time for
larger field intensities; this is largely due to the saturation
limit of t trap1 as given by Eq.~28!. Note the poor agreement
between the predicted behavior and the data for theM540
bead chain. This was anticipated since the free radius of
gyrationr g0 is now larger than the radius of the semicircular
protrusionsr and thus theM540 bead chain does not quite
meet the criteria~i.e., r g0(M ),r) for which Eq. ~31! is
valid. The critical field intensities, manifested as the field
intensity for which the best fit~solid! curve crosses the field
axis, can be fitted linearly~to a good approximation! with
respect toM ~see Fig. 9! as predicted from Eq.~36!; the best
straight line fit through our critical field intensities yields the

relation«m(M )'0.057(3)@12M /71(15)# ~see Fig. 9!. Our
simple analytical model thus provides an adequate descrip-
tion of the physics of electrophoresis in entropically inhomo-
geneous media.

C. Phase diagram for entropic trapping

We now present a phase diagramlike description of the
entropic trapping of a polyelectrolyte. In Fig. 10 we give our
simulation results for aM510 bead chain migrating in a
tube with diametersdT52.8 andd050.8. We plotted the
logarithm of the relative forward trapping time
log10@t trap1 /(2t0)# versus the logarithm of relative recipro-
cal field strength log10@«m /«#. The solid line is the predic-
tion for the limiting case of a free chain log10@t01 /(2t0)#,
where t01 is given by Eqs.~26!–~28!. Three separate re-
gimes can be identified:~a! a high field asymptotic regime
where the forward trapping time approaches the free-chain
limit ~note the unit slope!, ~b! a transition regime around the
critical field, and, finally,~c! a plateau regime for vanishing
field intensities«!«m , where the dynamics is dominated by
entropic effects. The distance between the plateau and the
limiting curve ~the horizontal part of the solid line! can be
taken as a quantitative measure of the degree of entropic
trapping. This distance for fields larger than the critical field
can be regarded as a measure of the friction~induced through
collisions with the strictures! against the motion of the chain.
The critical field is shown to be that field for which the
~forward! trapping time decrease below the transit time 2t0
predicted for a free chain in the vanishing-field limit; thus
the critical field appears at the intersection point~0,0!. Un-
derstanding how this diagram varies for different molecular
sizes and stricture geometries is obviously the key to opti-
mizing a polymer separation system that uses inhomoge-
neous sieving media@21#. This is planned to be discussed in
a forthcoming article.

D. Longitudinal diffusion coefficient dcmi for «>«µ

Above the critical field«m , the hopping mechanism can
be modeled as a directed walk~here in one dimension! with
a mean jumping timêt trap1& and a fixed jump sizeuDyu. In
this limit, the variance of the~forward! jumping time
s trap1
2 5^t trap1

2 &2^t trap1&2 may be related to the longitudi-
nal diffusion coefficientdc.m.uu via the expression@22#

dc.m.uu'
uDyu2

2

s trap1
2

^t trap1&3
. ~37!

In Fig. 11 we have plotted the longitudinal diffusion coeffi-
cient dc.m.uu, as given by Eq.~37!, vs log10(«) for a M510
bead chain in a tube with characteristic diametersdT52.8
andd050.8. We find that there exists a critical field intensity
«D(M510)'0.2 at which the diffusion coefficientdc.m.uu
reaches a maximum value. Our results~not shown! indicate
that«D(M ) is a decreasing function of molecular sizeM , as
expected. This implies the existence of an intermediate re-
gime between the low field («,«m) regime, dominated by
entropic trapping, and the high-field («.«D) regime, which
is characterized by the~almost! free electrophoretic drift of
the chain. In the intermediate field regime («m,«,«D), the
transitions are all in the direction of the field since the elec-

FIG. 7. Longitudinal position of the center of mass~scaled ac-
cording to pore indexyc.m./uDyu) for aM510 bead chain in a tube
with characteristic diametersdT52.8 andd050.8 plotted~pore in-
dex vs time! for a field intensity ~a! «50.005,«m and ~b!
«50.06.«m , where«m(M520)50.039(6).
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tric field induces Coulomb forces that are much stronger than
the entropic forces on the chains; however, as the detrapping
process is still sufficiently random~i.e., the distribution of
detrapping timest trap1 is still relatively broad!, a large spa-
tial dispersion of the molecules results over time.

In Fig. 12 we propose a schematic of the phase diagram
for electrophoretic entropic trapping; depicted is the molecu-
lar sizeM as a function of scaled field intensity«. We see
three different regions bounded by the two critical lines
«m(M ) and«D(M ). In region I («,«m), we are in the en-
tropic trapping regime and the field plays a minor ‘‘biasing’’
role. In region III («.«D), we enter the free electrophoretic
drift ~high field! regime where the entropic potentials play a
minor ‘‘frictional’’ role. Region II («m,«,«D) is the inter-
mediate crossover regime where the field can overcome the
effect of entropic trapping on the mobilitym, but not its
effect on the longitudinal diffusion coefficientdc.m.uu . Be-
cause the two critical linesM («m) andM («D) have finite
negative slopes on the diagram, the optimum field intensity
for a polydisperse sample, bounded by molecular sizes
M1,M,M2 , is given by «'«m(M2) with «!«D(M2)
since we do not want the electrophoretic bands to smear out
@e.g., choosing«'«m(M1) would prove disastrous and no
separation would be possible#. This represents a limiting cri-
terion for separation to be possible in such systems. Note that
in the high field regime«.«D(M1), the mobilitym is of the
order of unity for all species and separation is minimal. Thus
the existence of the intermediate regime, where the longitu-

FIG. 8. Forward trapping timet trap1 plotted as ln@ttrap1 /(2t0)#/(M uDyu) versus« for molecular sizes~a! M510, ~b! M520, ~c!
M530, and ~d! M540. Superposed is the predicted behavior«m(M )2« for small field intensities«!«m(M ) where one has
«m(M )50.057(3)@12M /71(15)# as found from the zero-field data of Fig. 5. Note that the agreement is excellent forM,40, while for
M540 the agreement is poor due to the fact that the radius of gyration then becomes larger than the radius of the semicircular protrusions.

FIG. 9. Critical field «m plotted vs molecular sizeM for the
cases shown in Fig. 8.
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dinal diffusion coefficient becomes catastrophically large,
limits the prospects of being able to use entropic trapping as
a means of obtaining high resolution electrophoretic separa-
tion of polyelectrolytes.

V. CONCLUSION

It was demonstrated by Baumga¨rtner and Muthukumar
@8–10# that a series of open spaces~pores! and confinements

~strictures!, for which the stricture size is of the order of the
dimensions of the polymeric coil, are thermodynamically
equivalent to entropic traps and entropic barriers, respec-
tively. The strictures create entropic barriers possessing a
height that controls the rate of transport between the pores.
In this paper, we considered the effect of electric fields on the
entropic trapping process in a model system; we revealed the
existence of three electrophoretic regimes for molecular spe-
cies that can be fully contained within the pores and stricture
regions. The special case where the polyelectrolytes are dis-
tributed over many pores was not considered. Such a study
would prove most interesting, especially if one can observe a
transition to the reptation regime~e.g., species whose radii of
gyration are in excess of, say, 2–5 times the average pore
spacing are reputed to undergo such transitions@23#!.

We have shown that, in our model system of pores and
‘‘round’’ strictures, the electrophoretic transport of polyelec-
trolytes is an activated process whereby the rate of entropic
barrier passage is controlled by the product of the attempt
frequency with an exponential in both~i! the chain’s entropy
decrease during confinement inthe barrier and~ii ! the drop in
electric potential energy. This has important consequences in
our understanding of Ogston sieving dynamics of DNA gel
electrophoresis as one expects a transition from the Ogston
sieving regime to that of entropic barriers.

We also demonstrated the existence of a critical~mobility!
field intensity,«m , which we related to the characteristics of
two different phase diagrams. These diagrams not only ob-
viate the different transport regimes, they also serve to char-
acterize the degree of entropic trapping in both a qualitative
as well as a quantitative fashion for the given experimental
setup. Note that the existence of a critical~mobility! field
«m for single-stranded DNA~ssDNA! was verified experi-
mentally through the studies of Mayer, Slater, and Drouin
@13# in polyacrylamide gels; it was found that, for ssDNA

FIG. 10. Phase diagram for aM510 bead chain in a tube of
diameterdT52.8 and of channel diameterd050.8. Here we plot
the logarithm of the ~relative! forward trapping time
log10@t trap1 /(2t0)# versus the logarithm of~relative! reciprocal
field strength log10@«m /«#. The solid line represents the limiting
~free-drift! behavior of polyelectrolytes in the absence of constraints
log10@t01 /(2t)#, wheret01 is given by Eqs.~26!-~28!.

FIG. 11. Longitudinal diffusion coefficientdc.m.uu plotted as a
function of the base 10 logarithm of the field intensity« for a
M510 bead chain in a tube with diametersdT52.8 andd050.8.
Note the existence of a critical field intensity«D'0.2 for which
dc.m.uu is a maximum. The rise from a zero-field value of
d c.m. uu'0.01 todc.m.uu'0.084 represents more than an eightfold in-
crease.

FIG. 12. This schematic phase diagram of molecular sizeM vs
field intensity « reveals three regions bounded by the two lines
showing the molecular size-dependent critical fields«m(M ) and
«D(M ). In region I, we are in the entropic trapping regime. Region
II is an intermediate regime where the applied electric field domi-
nates over the entropic effects. Finally, in region III, we enter the
free electrophoretic drift regime where the strictures merely provide
‘‘frictional resistance.’’
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below 1000 bases, a field intensity of 19 V/cm is beyond the
critical field «m and, for molecular sizes of the order of
M5400 bases, the critical field is«m(400 bases!'9.4 V/cm.
An extensive experimental investigation of«m(M ) is in
progress@24#.

We note that, in our nonexcluded volume model, the criti-
cal field«m(M ) is molecular size dependent due to the topo-
logical interaction between the polymer chain and the
~round! stricture; were the stricture flat and long enough to
fully contain the chains~no spillout!, this molecular size de-
pendence would disappear~self-excluded-volume interac-
tions would not alter this conclusion!. However, in the strong
confinement limit where spillout of the monomers occurs,
the work of Baumga¨rtner and Muthukumar@9# would sug-
gest the scaling relationship

t trap6
2t0

'expHM F f S 1d0D
1/n

2
1

2
~ f11!S 1dTD

1/n

7«uDyuG J ,
~38!

wheref is the fraction of monomers inside the stricture dur-

ing the transition andn is Flory’s exponent (n5 3
4 and n'

3
5 in d52 and 3 dimensions, respectively!. By strong con-
finement, we mean that the pores are large enough to fully
contain the chains between transitions while, during transi-
tions, only a fractionf of the beads are confined within the
stricture and the remaining (12 f )M beads are distributed
over the two adjacent pores. Equation~38! applies strictly for
a self-excluded-volume chain in a ‘‘toy model’’ network
comprised of pores of sizedT and of strictures of diameter
d0 and lengthl. In this limit, f is molecular size dependent
and given by

f'ld0
~1/n!21M21. ~39!

Consequently, we may rewrite Eq.~38! in the form

t trap6
2t0

'exp$M uDyu@~«m~M !7«#%, ~40!

where the molecular size-dependent critical~mobility! field
is now given by

«m~M !'
1

M uDyu Fnb2 1

2 S nb1 M

d0
1/nD S d0dTD

1/nG , ~41!

where the topological parameternb5l/d0 may be regarded
as the number of ‘‘blobs’’ contained in the stricture during a
transition ~as per the scaling argument!. We thus conclude
that a molecular size-dependent critical field«m(M ) is a gen-
eral feature of any realistic entropic trapping system.

Interestingly, as entropic trapping is an activated process,
it may be possible to exploit stochastic-resonance effects
@25# in entropic trapping systems; one would then require
that the pulse duration~of the ac component of the field! be
set to conform with the time between traps~i.e.,
tpulse't trap). It is not unreasonable, then, to suspect that
such resonance effects play a major role in techniques such
as field-inversion gel electrophoresis, where great improve-
ments in the resolution of electrophoresed molecular bands is
possible over other techniques@26,27#.

It is indeed the competition between the mobility and the
diffusion coefficient~over the range of applicable field inten-
sities! that will determine the resolution in entropic trapping
systems. In our model system and for field intensities below
the critical field«m , the mobility is very molecular size de-
pendent, but, in fact, small; when the field intensity exceeds
the critical field«D , the mobilities approach unity; for inter-
mediate field intensities«m,«,«D , band broadening be-
comes a limiting factor due to the large diffusion coefficient.
The existence of the, as of yet, unknown intermediate regime
II ~see Fig. 12! renders entropic trapping an unlikely mecha-
nism for high-performance separation systems if pulsed
fields are not used.

Relaxation phenomena, although not discussed explicitly
in this article, also play a role in entropic trapping systems
during electrophoresis experiments. For instance, one typi-
cally requires fairly large fields to minimize the duration of
the separation. Unfortunately, the maximum field strength
permitted by an entropic separation process is in fact limited
due to the finite relaxation times of polymeric coils, which,
upon emerging from a stricture, remain somewhat perturbed
~collapsed! over finite ~relaxation! time scales. Indeed, for
large field intensities, the free-drift time between strictures
can in fact be less than the relaxation time. This engenders,
therefore, yet another critical~relaxation! field intensity@17#,
which, for Rouse-like relaxation, scales as« relax;uDyu/M2,
where uDyu is the interpore distance. Of course, one must
ensure that the field intensity is kept below this relaxation
critical field in order to remain in the entropic trapping re-
gime ~the conformational entropy is indeed linked with the
relaxation of the chain!. A further development along these
lines is planned to appear in a forthcoming study.
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